
r:038
200 M7:oTA:v MtrTs MrTw

ASSIFICO
Q1FFflOIT RAt. FILES THEIR APPL ICAT ION TO YHE MAINTENA ?Oc LAR2t~C (U)

of I

_
lil a

_ _ _

I
______ END

DATE
if ILMED______
A-n

I
j
~~~ 

~II~ HC

~~~~~~~~~~~~~~~~~ ~~~ ~: 
lr~~~matuon Systems

WORKING PAPER SERIES

>~.
.

CD
/

~~~‘ I L&J

AP R ii 1~TT~~~~\

I
L MI’~RC (i,wI~at, S~hooI o~ Buiiness Admin~~l ’Th on 93 Bl.~.n HaI’ IJnwe,sit5 of Muinisoi~. M~nneapo5~. M,n,*sota 55455

(6) ? 3 1 3  73 (22 ) 

~~~~~~~~~~~~~~~~~~~ 

.~

I

.

’

WORKING PAPER SERIES

~~~;i~ii 2 ~~~

~~~~~~~~~~ 76~~5

~~fferent1.l Liles: jheir licat ion‘To thej lainfBnance dY Lar tabases

Prepared by

Graduate S

~~~n 

Inistratlon

Departui*n t of Operations Research
Cornell Unive rs i ty
Ithaca , New York

Msnageiuent Inf ormati on Syste ms Research Cente r -Graduate School of Business Aóiiinistratjon
Un i versity of Minnesota

Minneapolis, Minnesota 55455

D D ~~
_ _ _  I

~~~~~~~~~~~ ~~~~~~~ ~
~~~~?~~~~3s ~~~ A~~~O

• - -

I



Abstract

DIFFERENTIAL FILES: THEIR APPLICATION TO THE
Y.~INTENANCE OF LARGE DATABASES

Dennis C. Severance
University of Minnesota

Gay M. Lohman
Cornell University

The representation of a collection of data in terms of its differences

from some pre-established point of reference is a basic compaction technique

which finds wide applicability . This paper describes a differential data-

base representation which is shown to be an efficient method for storing

large and volatile databases. The technique confines database modifications

to a relatively small area of physical storage and as a result offers two

significant operational advantages. First , because the 4~ference po1nt’~~
for the database is inherently static, it can be simply and efficiently

stored. Moreover, since all i~ dlfication s to the database are physically

localized , the process of backup and the process of recovery are relatively

fast and inexpensive.

key Words and Phrases: Database maintenance , data sharing , backup and

recovery , differential f i les

ITS
CR Categories : 3.50, 3.73 , 3.80, 4 .33 .~ ~~~ ~TIMINUID 0

iUUFICATIR...~ 

—A — •
m IvTtau -Ai . . T ; ‘ z

~ 

~s— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • —

- . - 
I



DIFFERENTIAL FILES: THEIR APPLICATION TO THE
MAINTENANCE OF LARGE DATABASES

Dennis C, Severance
University of Minnesota

Guy N. Lolvea n
Cornell University

1. INTR~~UCTI0$

The representation of data in terms of differences from a pre-established

point of reference Is a data compaction technique with wide applicability . The

differential coding of satellite data , the pre-execution merge of an object

module with an associated “patch” deck, the i nvocation of recursive function calls ,

tne modification of a DO—loop index , the concept of base—addressin g, and even the

distribution of a revised system manual in the form of errata sheets are all appli-

cations of a co~~ n principle: differential encoding.

This paper describes a differential database representation which is s hown

to be an efficient method for storing a large and changing database. The power

of the representation is derived from the fact that all da tabase modifications

are localized into a relatively small storage area, called a differential file.

By consolidating changes In this manner, it is possible to reduce backup costs,

speed the process of database recovery , and even minimize the probability of a

serious data loss. In addition , the technique can provide Increased data avail-

ability while reducing both storage and retrieval costs.

The paper consists of two major sections : Section 2 motivates, describes.
•nd analyzes the concept of a differential file; Section 3 presents ten specific

advantages of the idea. A stameary and an outl i ne of future research are given

in conclusion.

-



2

2. DIFFERENTIAL FILES

2.1 An analo.~~ A differential file for a database is analogous to an

errata list for a book. Rather than print a new edition of a book each time

a change in text is desired, a publisher will identify corrections by page and

line nwaber, and collect them into an errata list which is distributed with

each book. This procedure significantly reduces publication costs. To reference

the corrected version of the book, however, readers mist consult the errata list

before any reading of the main text. An Increase in access time Is thus traded

for a decrease in maintenance cost. If text changes are continued , the errata

list will grow to a sufficient length that reorganization costs are justified.

All changes would then be Incorporated into the book, forming a new physical

edition.

Updating a large database poses a similar problem. As with a book, it is

generally simplest and least expansive to acc~mulate changes over a period of

time and to post them ~~ ~~~~ when creating a new database edition (generation).

It is most ex pensive, as measured in ter ms of storage costs, maintenance time,

and overall system complexity , to directly modify the database with each update

transaction. As a compromise, a differential file can be used l ike  an errata

list to collect and identify pending record changes. Consulting the differen-

tial file as a first step in data retrieval effectively yields an up—to—date

database. At a cost of increased access time, system overhead may be reduced.

When the diffe rential file grows sufficiently large , a reorganization would

incorporate all changes into a new generation of the database , and the now

~~ ty differential file would begin acc,,sulat ing chan ges anew.

2 ,2 Ear l ier proposals. The concept of a differe ntial f i le has been redis-

co vered many t imes . The authors have benefited from numerous discuss ions with



3

colleagues who have seen the idea used in one form or another to solve parti-

cular updating problems. Three documented systems will be described. Turnburke

(16] outlines a differential str icture for tape systems wisich is designed to

— avoid the writing of unchanged data records while sequentiall y processing batched

upda tes. A data file is composed from two ordered subf iles : a large collection

of read-only records is stored on one tape, while a smaller collection of modified

records is maintained on a separate ‘change-ta pe”. To update the data file, both

tapes are merged with a transaction file and a new change—tape is output. Un-

changed records from the read-only tape are never written. Turnburke recoennends

data file organization once one half of all records have been modified.

Iloycroft (13] suggests a direct access file organization which also makes

use of a differential file concept to process file changes. The system addresses

records via a unique identifier , and every data reference passes through a data-

base Index which points to all records. Once created, the main data file is

newer modified. Mew database records are accessed through the index but are

stored in a separate overflow area. All record modifications are treated as re-

cord additions. A new copy of the record Is created and the index is updated to

point into the overflow area. The old record is not destroyed, but rather main-

tained as a before—Image and pointed to by the new record. Roycroft ’s primary

motivation for this technique is to permit a data record to grow in size as a re-

sult of an update without disturbing the positioni ng of neighborin g records.

is system witn a similar structure is deScribed by Rappariort [I?]. It wa~ -

veloped to facilitate da tabase recovery after an ele ctr i dl power failure. Again

all database records are accessed through a system index , and all modifications

are physically separated into a file of changes called a MOOFILI . tach changed

record points back to its before-image. In the event of a power loss . informat ion



a

in a transaction log is i~ ed in con3unction wi th the MODFILI to undo partially

completed update transactions.

2.3 A (ieneralization , Whenever a record is updated in either the Roycroft
or Rappaport system, a record searth mechanism (Initially associated with Only

the main data file) is modi fied to address a new record copy wh ich Is stored in

what is essentially a di fferent file. As depicted by Fi gure Ix , the current ver-
sson of any identif ied record, whether in the main f i le or the differential f , l e ,
is accessed via a coermn search mechanism —— the system index .

A generalization of this record accessing strategy is shown in Figure lb .
h ere, given the iden tifier for any database record, the differential file is

always searched first for that record; in the event that the record is not found.
it is then retrieved from the main data file. Imp licit in this diagram is the

(dc t that each file may utilize a separate search mechanism, The main f i le Index

is then static and can be quicb.~y reto~ve,-ed from a backup copy in the event of a
loss . Index vola tility is shifted to a smaller, and therefore more quickly re—

coverable, differential file index .

To isolate tile main file and its search mechanism from change, a del ay in

th, form of a dIffe rential file search is pai d for every record retrieval . If

the two data files and their search mechanisms can be assigned to different

devices and accessed via separate channels , then both file searche s may proceed
in parallel and system users wil l not perceive the increased delay. Wisen Such
overlap is i mpossible , one can expect the average time of a data record retrieval

(assumi ng a Judicious selection of the di fferential fxl e search strategy [15)) to

increase by the amount of time reguired for a random access to secondary memory.
This additio n al access time may be comparatively large and can seriousl y degrade

System performance.



V

Search 
Search 

[ xa ime

Differential I

Database 
File 

Filter in

Index .i 
Pain ~~~~~

Access Pain Aa

~

c

~ 

1ff; .,~t1aT .

Mo 
p,.~~ bly

Pacord 
S~~rcb 

-— 

Search

Pain File DifferentialFile
tc~~~ 

index

Reco~~~~
’
~

b. Separate 1ndeX~S \
search

C. SeparSt indexes and
Search F1~te~

Figure 1 Alt.fllatiVS Access Strategies



6

2.4 Avo ldinq a double—access. For operating environments in which a signi-

ficant increase in retrieval time is intol ler abl e . Figure lc suggests a modified

search strategy which uses a pre—search filtering algorithm to reduce the number

of unnecessary searcnes of the differential file . A filtering scheme, devised
by bloom t l J to detect the occurence of rare events, can be used to nearly elinni-

m ate unsuccessfu l searches . The Bloom technique associates the differential

f i le with a ewnin memory bit vector B of length M , and some number X of hashing

funct ions wiu i~h map record ident ifiers into bit addresses . When the differen-
tial file is Initial ly empty, all bits in B are set to zero. When ever a record

is stored in the differential file , each transformation is applied to the record
identifier and each of the X bits addressed is set to

getrieval of a database record now proceeds as follows . The identifier

of a record to be retrieved is mapped through each transformation and the logical

ANt) operator is applied to the I bits which are addressed. The resulting bit

value is either U or 1, The va lue 0 is a certain indication that the most re-

cant version of the record still resides in the main data file; the differential

f i le searc h is ski pped and the main file Is ihimledlately accessed. A resulting
value of 1 is a probable indication that an updated copy of the record wil l be
found in tile differential file and it is therefore searched. There is a possi-

bility that this  search may prov e fruitless , since the bits associated with a

given identifier might coincidentall y be set to I by mappings from other updated

records. Onl y in the event of such a filtering error are both files searched

du ring a record retrieval.

~ It is reasonable to assume that the cumulative computation time of the hashing

functions is insi gnificant in comparison to the time required for an access to

secondary memory, tither division [3] or quadratic hashing functions Ill) , for

exan~ Ie , can generate several addresses quickl y.



-

2.5 Double-access frequency. The probability of a filtering error at a

given point in time is a function of both the proportion of main file records

which have been modified and the proportion of bits in B which are set to 1 .

Expected values for all of these quantities can be calculated . Consider a data-

base of N records. Assume updates are Independent, uniformly distributed over

all records, and arrive over time at a fixed rate r. Simil arl y assume tine exis-

tence of a collection of K hashing functions whose mappings are independent and

uniform over IS. Define I to be the length of time between reorganizations of

the main data file. The expected proportion ~f distinc t main file records , Rt.

wnicn are updated during a time period of length t is given by

R1~~ 
~i~~~)rt l~~~exP(i~

For various values of record update intensity , rT/N, Figure 2 depicts the growth

over time of both Rt and rtfh. Respective ly, these curves characterize the size

of a differential file which contains (aj onl y the most recent image of a chianged

record , or (b) an accumulation of all such record images.

Now consider a random bit in B. The probability that It has value 1 at time t

is

- l\ rtx

and therefore, given an identifier of an unchanged record , the probability of a

filtering error is

[1 
- 

~~~ 
rtx] I - exp

(
~~

)] I
The unconditiona l probabilit y of a filte ring error at time t is thus given by

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1 . 1

~
- ) Total Changes rt

I (—) Records Affected Mt
.2

0.21 0.41 0.61 0.81 1.01 Time

Figure 2 Differential File Growth at

Update Intensity I • rI/ N

:.~~



exp (
~

) [
~ 

- exp (.
i.
~~
)] 

x

2.b Designing a Bloom filter. The frequency with which filtering errors

occur can be control led by manipulating the values selected for N and 5 . A

covmon design problem is l ikel y to be the fol iowing . Some quantity of space N’

is available in main memory and can reasonabl y be al located as a bit vector. It

is necessary to determine the number of transformations which should map into

this f ixed area . If the value selected for I is too sma ll, the system w i l l  under-

ut il ize the available bits . If , on the other hand, S is too large then most bi ts

wi l l  be set to I and the filter wi l l  be ineffective . Figure 3 il lustrates f’~ as

a function of time for various values of 5. 4 and N are arbitrari ly set to rT .

Each curve shows an initial increase in filtering errors, which eventuall y de-

cline as the proportion of unchanged records in the main file diminishes. As

the value of I increases , superior in itial performance deteriorates at a faster

rate to inferior final performance.

In general , for a f ixed II’ , a number of reasonable Objective functions might

be used to select a value for I. /4mong these are:

(a) minimize P
~ 

a t a given t ime t ’,

(b) m inimize f I 
~~ 

dt ,

(c) minimize (maximum 
~~ 

over the time Interval [0,1),

(d) minim i ze ~ T 

~ 
dt , subject to

Intuitivel y, one can see from F i gure 3 tha t each of these objectives might lead

to tne selection of a different value for ~~. W hi le the forma l analys i s requ ired

by problems (b), (c), and (d) is beyond the scope of the current paper, prob lem

(a) is easily solved using classical optimi zation techniques. Setting



- 

10

x~~ lO

Figure 3 Prob bil ity of a Filtering Error with X Transfor mations,
S iv , n N - N - rT .

4_ •

—- - 
I

’)



-

dP t . exp ~~~ [I 
- exp .~~ .xi] 

K-I 
!~~ exp

+ In 
[I 

- exp S - !~
_
~.j [I - exp (_rt~I)J K}

equal to zero, y ields the equality

M’In2.

S i nce d2Pt, is positive at It , this value of K minimize s P
~

, for g iven va lues

d12

N’ , r, and V .

For I equal to I, one can easily verify that the expec ted number of bits in

B set to 1 at time V is Pl’/2 (in agreement with a fundamenta l theorem of informa-

tion theory and a similar result obtained by Bloom), and that the probab iln tf of

a filtering error at this time is

• exp 
(,
i*) 

~ 
exp 

(-

~
-) (.6185) ~~ T

In pract ice I most be integra l and the two integers nearest should be chec h ed for

minimal Ps,. It can be shown that one of them must be the optimal value of a~

Apply ing these results to a specific problem with N l0~ , r I0~ , I

N - * ~~~ and t’ = 1, one cdlcu lates = 3.41 and P1 
. .0905. ~or - 3 and

4, P1 takes on values .0918 and .0919 respectivel y. Thus three transfo rmations

used in conjunction with the given 3125 byte Bloom—vector is expected to produce

fewer than one-in-ten filtering errors at the time of reorganization . (The average

error rate over time is approximately one-in—thirty.) A differential file , there-

fo re , w ill not appreciably affect average retrieval time for this database.



— —

12

3. ADVANTAGES OF A DIFFERENTiAL FILL

The history of database develoçaient effo rts shows design si~~lIcity to be

a dom inant characteristic of successful i.plmeentations. And although the notion

of a differential file is concep tually rather si u~,le , in practice , any additional

system co mplex ity mast be justified by tangible benefits. The potential advantag es

of a differentially organized database are not widely appreciated ; even existing

syst ~~ are rather narrowly eotiva ted . This section therefore collects and

discusses ten general benefits that can be realized . Six relate to database

integrity and show that a differential file can reduce backup costs , speed recove ry

and even minimize the chances of a serious data loss. The final four advantages

are operation al; a differential file can provide increased data availability and

simultaneously reduce storage and retrieval costs . In total these benefits con-

stitute a strong argument for a much wider use of differe ntial files , especially

for the maintenance of very large databases.

3,1 Reduces database d~~ in~ costs. In general , to recover a database which

has been physically demaged, some form of roll-forward procedure (Yourdon (17]) is

~~ loy.d: The status of the database, saved at a previous point in time is first

reloaded; the cumaj latlve effec t of all update transactions processed since that

time Is then re-established via some ahereviated form of reprocessing. The fre-

quency with which the database is copied to its backup s’ile is a critical para-

meter in designing suth a procedure (Chandy, et al,, [4], Drake and Smith (6]).

Frequent di~~ ing permi ts fast recovery , but is associated with a high system over-

head.

Since the time required for a ds~~ is prop ortional to the volume of data

copied (8]. a differential file can drastically reduce the cost to backup a

large database, particularly when the proportion of records cha nged during a



13

backup period is small . Consider , for examp le , a database with 101, 500—charac-

ter records stored in track size blocks on an IBM 3330 disk facility. Suppose

updates are applied five days per week , 10 hours per day at a rate of 100 changes

per hour. Using a fast dump/restore utility [8] a full database dump would re-

qu i re over six hours to accomplish. On the other hand , even after a full week of

processing , a differential file , its bit vector , and a reasonable search mechanism

coul d be dumped in less than bao minutes. In total , they would occupy less than

300 tracks of storage as compared to 51 disk packs.

3.2 Fac ilitates incremental dtmçjj.~~ It is sometimes impractical to dump

an entire database at one time . An incremental dumping strategy (Sayani [14].

also calle d ‘differential disk dumping ” by Vourdon [17]) will sequence through

physical sections of a database, periodically dumping each section which has

changed. A differential file implementation in which new records are sequentially

allocated in secondary memory (for example , Rappaport’ s system [12J) lends i tself

naturally to such a strategy . To provide a complete database backup at any point

in time , one need only append to the current backup file those differential file

records created since the last dump. With each incremental dump , one mi ght also

choose to save the current status of the differential file bit vector and search

index. Al ternatively, both could be recovered with a single scan of the restc’red
differential file.

3.3 PermIts both realtime dsmpin~ and reorganization with concurrent updates.

Since a dump represents the Instantaneous status of a database at a fixed point

In time , conventional backup procedures will prohibit all changes while this snap-

shot is developed, by dumping onl y a small differential f i le , the time during

w hich update transactions are prohibited can be substantiall y reduced. t’ore

importantly, one can avoid completel y the need to inhibit change by buildin g a



‘4

“differential-differential” file to store record updates which are generated
during the differential file dumping process , For most applications , this fi le
will be quite smell and reasonably held in main memory. Acting as a ‘ca c he ”
store during the dump, i t would be scanned before every retrieval. When the

dump is complete, its records would be incorporated into the main differential
file. Clearly , the same basic idea wi l l  permit online reorganization. Since
the generation of a new main file might require a significant amount of time ,
the differential-differential file wou ld be maintained in seconda ry memory. It
replaces the ol d differenti al file when reorganization is complete.

These procedures for dumping and reorganizing a database are particu larly

appropriate for applications such as airline reservation sys tems , which require
24-hour, online availa bili ty , but which experience periods of reduced traffic

IntensIty . Wit hout locking out updates , either procedure could be activated
during a slack period and would act to level the system load.

3.4 ~peeds recovery from a soft data loss. Damage to storage hardware

is not the only cause of data loss. A user program may incorrectly modify a
database , or a program errofr’a system deadlock or a machine failure may abort

the processing of an update transaction in the midst of a multi—s tep procedure
(such as , a transfer of funds between bank accounts). The content and/or struc-

tura l integrity of the database may be damaged by either type of error. Rãppa-

port s Vehica l and Driver Information System [12] provides a working example of
a differential file (mainta ined in the form of an online after-image log) which
permi ts rapid system recovery through the rol l back of incorrectl y processed or

partially completed transactions.

- .



IS

3.~ ~P!!~ recovery from a hard data loss. As described above, the use of

a differential file can dramatically reduce the cost of dumping a large database.
An inexpensive diaç procedure can be invoked frequently, which will in turn re-

duce the average number of changes to be reapplied in the event of a database loss.

3.6 Reduces the risk of a serious data loss. When recovering a database ,

a properly tuned dump—restore utility can reload a physical dump at nearly the

maxi*~i transfer rate of availabl e hardware (on the order of lO~ characters/second).

The major portion of recovery time is then spent individually reapplying updates

to a small fraction of the restored records, This small subset of changed records

constitutes an ‘Achiles ’ heel .” Traditional update-in—place file organizations

distribute changed records widely over secondary memory, this practice guarantees
that even local ized physical demage (e.g.. a track loss or head crash on a single
device of a very large database) will require a lengthy recovery procedure. By

concentrating updates In a small physical area , a differential file offers three

potential advantag es:

(a) The critical exposure area of a database is minimized.
lest physical damage can be quickly repaired with a
localized backup copy procedure.

(b) The critical area may be allocated to a more reliable
device type than is practical for the larger main file .

Cc ) The small critical area may be duplexed to provide the
most valuable redundancy for a marginal increase in op-
erating costs.

3.? Sup~~rts “memo files ’ efficiently . Accurate online updating of a database

requires comp lex software to provide multiuser access control and to assure data

r e c o v e r a b i l i t y  ( K i n g  and Cotlmeyer [9]). To avoid the substantial overhead asso-

ciated with such software, many “online ’ systems will actuall y batch updates for



16

end-of—day processing. Inventory control systems , for exa mple , can generally

tolerate some loss of accuracy during the batching cycle provided data integrity

is re-established with each batch run. In systems where a predictable informa-

tion lag mi ght be exploited (e.g., banking or stock quotation) the memo file

concept of Davis [5] can be used to maintain “probably—accurate’ data without

the need for complex software. The idea is to permit software which does not

defend against Improbable events (such as Concurrent update, system failure , head

crash) to update a “scratch pad” copy of the database. At end-of-day the copy

is discarded and the updates are reapplied to the ‘real” database. The use for

a differential file here is obvious.

3.8 Si mp lifies software deve lopeent. Since the main data file and its

associated index are unaffected by updates in a differential file system, th i s

affo rts a natural environeent for the developoent and testing of new data pro-

cessing software. Using two differential  files , one can imagine a developeental

system and a production system running in parallel with both accessing the same

main file but medifying their own differential files. To debug new software,

online comparisons could be made between the data values maintained by both systems .

For very large databases, where it Is either (1) infeasible to create a duplicate

copy of the database for experimentation , or (2) it is at least impossible for

both copies to be online simultaneously, this use of differential files is parti-

cularly important.

3.9 SimplifIe s main file software. Because the main file is static between

reorganizations. the structures required for its storage are inherently simple

and efficient. Neither free space nor record linkages are allocated to acconiodate

record growth, and a greate r density of data storage can be achieved when the

database is initially loaded (13]. Since the main file is read—only, multiple



17

ac:ess requests may be handled ci’ncurrently wi thout requiring the use of a

complex protocol to avoid deadloc k or errors due to simultaneous write access

(Brinch Hansen [2]). thus if a user program requires access to data whi ch is

either (I) known to be constant or (2) relat ive l y stable and absolute currency

is non—critical , then such requests may bypass the differential file and safely

access only the main file wIthout queuelng for private access.

3.10 Reduces future database storage costs. Within the next decade , tril -

li on bit random access mass storage devices w~l1 be prov~ded by at least one of

severa l competing technologies. The coSt for a dynamic read-write capab ility is

expected to be an order of magnitude higher than the cost of a read-only meinory.~

The appl i cation of the differential flle concept in such an operating enviro relient

Is obvious : the large main data file is read—only. The Cost reduction which

differential files provide will greatly enlarge the realm of feasible computer—

based information systems.

4 . StM~iRY MD FURThER RESEARCH

A differential file is an efficient representation of database updates. By

consol idating medificdtions , and physicall y isolating them from the ma in, read-

only data file , it is possible to reduce backup costs, speed database recovery,

avoid ierious data losses, increase data availabi lity , decrease storage costs and

speed retrieval operations. The paper provides a nuiiber of arguments which should

motivate a wider use of differential files , particularl y for the maintenance of

very large databases.

based upon presentations made in May 1975 by the Panel on Future Architecture

at the Very Large Data Base Conference , Framingh eii, Pt’s,



18

The design of a differential file system involves tradeoffs among the costs

of update, retrieval , storage, backup, and recovery. Implementation questions

currently under investig ation by the authors include:

(1) What data shou ld  be stored in a differential file? Should it con-

tain complete data records, as suggested here, or only data fields which have

changed. Should old versions of a differential file record be overwrit ten or

retained as a before-image?

(2) How frequently should differential file backup and reorganization occur?

(3) How does differential file size and filter error probabili ty grow with

the non-random arrival of non—uniform updates? How should the filter parameters

N and X be selected?

(4) Given a hierarchy of storage devices, at what levels should the m a in

fi le, differential file , search mechani sms, and bit vector be stored?

(5) How can differential files be used to facilitate maintenance of dis-

tributed databases?

Formal statements of these problems are extremely complex and their solution is

difficult. When solved, however, the results may have significant practical value.

ACKNOWL EDGEMENTS

The authors wisn to express their appreciation to Eric Clmeins, Thomas Dimock ,

Gordon Everest, and Williem Maxwell for numerous helpful discussions during the

preparation of this paper. The David N. Taylor Naval Ship Resea rch and Development

Center provided support for this research under Contract N00014—75-C-lll9.



19

REFERENCES

1. Bloom, B. H., ‘Space/Time Trade—off s in Hash Coding with Allowable Errors ,”
Coriimanications of the ACM, 13:7 (July, 1970), 422-426.

2. Brinch Hansen , P., Operating System Principles, [nglewood Cl i f fs . NJ:
Prentice—Hall (1973), 55—131.

3. Buchtiolz , N., ‘Fi le Organization and Add essing, ” IBM Systems Journal
(June, 1963), 80-Ill.

4. Ctwndy, K. H., J. C. Browne, C. W. Dissly, an d W. R, Uhrig, “Analy tic Models
for Rollback and Recovery Strategies in Data Base Systems ,’ IEEE Transactions
Software engineering, SE-1:1 (March , 1975), 100.110.

5. Davis , G. B., Mana nt Information S~stenrs: Conceptual Foundations
Structure and Deve o~ ient, New York: McGraw-Hill Book Company T~74T~ 2/8.

6. Lk’ake, R. N. and J, 1. Smith , ‘Some Techniques for File Recovery ,” Aus tralian
Coirç. J., 3:4 (November, 1971), 162—170. —

7. IBM Corporation , Introduction to IBM Direct—Access Storage Devices and Organi —
ation Methods GC2O—1649—8, White Plains , NY: IBM Corporation (February, 1974),
20—33.

8, Innovation Data Processing Incorporated , Fast Dump Restore and Data Set Func-
tions, User Doctarientation. Clifton , NJ; Innovation Data ProcessinjThc.
(July, 1973).

9. king, P. F. an d A. J. Collmeyer , “Da tabase Sharing —— An Efficient Mechanism
for Supporting Concurrent Processes ,” Proceedings of the 1973 AF IPS Conference
(1973) , 27 1—2 75.

10. Knuth , D. E., Sorting and Searching, The Art of Computer Progravering 3,
Reading , P4*: Addison—Wesley (1973), 561-562.

II . Maurer , N, 0., ‘An Improved Hash Code for Scatter Storage,” Coimminications
of the ACM, 11 :1 (January, 1968), 35-38.

12. Rappaport, R. L., ‘File Structure Design to Facilitate On-line Instantaneous
Updating,’ Proceedings of the 1975 ACM SIGNOD Conference, 1.14 .

13. Roycroft, A. J., ‘Techniques for Handling Variable Length Log i cal Records
on IBM DIrect Access Storage Devices ,” Proceedlr;gs FIL( 6 8 Internationa l
Seminar on File Organization , Copenhagen (1968), 701-720.

II. Sayani , H. H,, “Restart and Recovery in Transaction — Oriented Information
Processing System ,” Proceedings of the 1974 ACM Slt~~lD Workshop on DataDescription , Access, and Control (May, 1974), 35l -1~~.

-J



20

15. Severance, 0. G., and R, A. Duhne, “Practitioner ’s Guide to Addressing
Algorithes,’ C~ u,unications of the ACM (Marc h, 1916).

16. Turnburke, V. P., Jr., “Sequential Data Processing Design ,” IBM Systems
Journal (March, 1963), 37—4 8.

17. Vourdon, E., Design of On—Line Computer Systems, Englewood Cliffs , NJ:
Prentice-Hal l (1972), 34O-3~3, 515—542.

- --- — ---


